105 research outputs found

    A Convolutional Encoder Model for Neural Machine Translation

    Full text link
    The prevalent approach to neural machine translation relies on bi-directional LSTMs to encode the source sentence. In this paper we present a faster and simpler architecture based on a succession of convolutional layers. This allows to encode the entire source sentence simultaneously compared to recurrent networks for which computation is constrained by temporal dependencies. On WMT'16 English-Romanian translation we achieve competitive accuracy to the state-of-the-art and we outperform several recently published results on the WMT'15 English-German task. Our models obtain almost the same accuracy as a very deep LSTM setup on WMT'14 English-French translation. Our convolutional encoder speeds up CPU decoding by more than two times at the same or higher accuracy as a strong bi-directional LSTM baseline.Comment: 13 page

    Super sensitivity and super resolution with quantum teleportation

    Get PDF
    We propose a method for quantum enhanced phase estimation based on continuous variable (CV) quantum teleportation. The phase shift probed by a coherent state can be enhanced by repeatedly teleporting the state back to interact with the phase shift again using a supply of two-mode squeezed vacuum states. In this way, both super resolution and super sensitivity can be obtained due to the coherent addition of the phase shift. The protocol enables Heisenberg limited sensitivity and super- resolution given sufficiently strong squeezing. The proposed method could be implemented with current or near-term technology of CV teleportation.Comment: 5 pagers, 3 figure

    Distributed quantum sensing in a continuous variable entangled network

    Full text link
    Networking plays a ubiquitous role in quantum technology. It is an integral part of quantum communication and has significant potential for upscaling quantum computer technologies that are otherwise not scalable. Recently, it was realized that sensing of multiple spatially distributed parameters may also benefit from an entangled quantum network. Here we experimentally demonstrate how sensing of an averaged phase shift among four distributed nodes benefits from an entangled quantum network. Using a four-mode entangled continuous variable (CV) state, we demonstrate deterministic quantum phase sensing with a precision beyond what is attainable with separable probes. The techniques behind this result can have direct applications in a number of primitives ranging from biological imaging to quantum networks of atomic clocks

    Leveraging Demonstrations with Latent Space Priors

    Full text link
    Demonstrations provide insight into relevant state or action space regions, bearing great potential to boost the efficiency and practicality of reinforcement learning agents. In this work, we propose to leverage demonstration datasets by combining skill learning and sequence modeling. Starting with a learned joint latent space, we separately train a generative model of demonstration sequences and an accompanying low-level policy. The sequence model forms a latent space prior over plausible demonstration behaviors to accelerate learning of high-level policies. We show how to acquire such priors from state-only motion capture demonstrations and explore several methods for integrating them into policy learning on transfer tasks. Our experimental results confirm that latent space priors provide significant gains in learning speed and final performance. We benchmark our approach on a set of challenging sparse-reward environments with a complex, simulated humanoid, and on offline RL benchmarks for navigation and object manipulation. Videos, source code and pre-trained models are available at the corresponding project website at https://facebookresearch.github.io/latent-space-priors .Comment: Published in Transactions on Machine Learning Research (03/2023

    Towards Knowledge-Based Personalized Product Description Generation in E-commerce

    Full text link
    Quality product descriptions are critical for providing competitive customer experience in an e-commerce platform. An accurate and attractive description not only helps customers make an informed decision but also improves the likelihood of purchase. However, crafting a successful product description is tedious and highly time-consuming. Due to its importance, automating the product description generation has attracted considerable interests from both research and industrial communities. Existing methods mainly use templates or statistical methods, and their performance could be rather limited. In this paper, we explore a new way to generate the personalized product description by combining the power of neural networks and knowledge base. Specifically, we propose a KnOwledge Based pErsonalized (or KOBE) product description generation model in the context of e-commerce. In KOBE, we extend the encoder-decoder framework, the Transformer, to a sequence modeling formulation using self-attention. In order to make the description both informative and personalized, KOBE considers a variety of important factors during text generation, including product aspects, user categories, and knowledge base, etc. Experiments on real-world datasets demonstrate that the proposed method out-performs the baseline on various metrics. KOBE can achieve an improvement of 9.7% over state-of-the-arts in terms of BLEU. We also present several case studies as the anecdotal evidence to further prove the effectiveness of the proposed approach. The framework has been deployed in Taobao, the largest online e-commerce platform in China.Comment: KDD 2019 Camera-ready. Website: https://sites.google.com/view/kobe201

    Mobile sensor data anonymization

    Get PDF
    Data from motion sensors such as accelerometers and gyroscopes embedded in our devices can reveal secondary undesired, private information about our activities. This information can be used for malicious purposes such as user identification by application developers. To address this problem, we propose a data transformation mechanism that enables a device to share data for specific applications (e.g.~monitoring their daily activities) without revealing private user information (e.g.~ user identity). We formulate this anonymization process based on an information theoretic approach and propose a new multi-objective loss function for training convolutional auto-encoders~(CAEs) to provide a practical approximation to our anonymization problem. This effective loss function forces the transformed data to minimize the information about the user's identity, as well as the data distortion to preserve application-specific utility. Our training process regulates the encoder to disregard user-identifiable patterns and tunes the decoder to shape the final output independently of users in the training set. Then, a trained CAE can be deployed on a user's mobile device to anonymize sensor data before sharing with an app, even for users who are not included in the training dataset. The results, on a dataset of 24 users for activity recognition, show a promising trade-off on transformed data between utility and privacy, with an accuracy for activity recognition over 92%, while reducing the chance of identifying a user to less than 7%

    PyExperimenter: Easily distribute experiments and track results

    Full text link
    PyExperimenter is a tool to facilitate the setup, documentation, execution, and subsequent evaluation of results from an empirical study of algorithms and in particular is designed to reduce the involved manual effort significantly. It is intended to be used by researchers in the field of artificial intelligence, but is not limited to those.Comment: Published in Journal of Open Source Softwar
    • …
    corecore